skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Harmon, Nicholas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. SUMMARY Imaging seismic velocity discontinuities within the Earth's interior offers important insight into our understanding of the tectonic plate, associated mantle dynamics, and the evolution of the planet. However, imaging velocity discontinuities in locations where station coverage is sparse, is sometimes challenging. Here we demonstrate the effectiveness of a new imaging approach using deconvolved SS precursor phases. We demonstrate its effectiveness by applying it to synthetic seismograms. We also apply it to ∼1.6 M SS precursor waveforms from the global seismic database (1990–2018) for comparison with CRUST1.0. We migrate to depth and stack the data in circular 6° bins. The synthetic tests demonstrate that we can recover Moho depths as shallow as 20 km. Globally, the Moho is resolved at 21–67 km depth beneath continental regions. The Moho increases in depth from 21 km ± 4 km beneath the continental shelf to 45–50 km beneath the continental interiors and is as deep as 67 ± 4 km beneath Tibet. We resolve the Moho in 77 percent of all continental bins, within 10 km of CRUST1.0, with all outliers located in coastal regions. We also demonstrate the feasibility of using this method to image discontinuities associated with the mantle transition zone with both synthetic and real data. Overall, the approach shows broad promise for imaging mantle discontinuities. 
    more » « less
  2. Earth's normal modes are fundamental observations used in global seismic tomography to understand Earth structure. Land seismic station coverage is sufficient to constrain the broadest scale Earth structures. However, 70% of Earth's surface is covered by the oceans, hampering our ability to observe variations in local mode frequencies that contribute to imaging small-scale structures. Broadband ocean bottom seismometers can record spheroidal modes to fill in gaps in global data coverage. Ocean bottom recordings are contaminated by signals from complex interactions between ocean and solid Earth dynamics at normal mode frequencies. We present a method for correcting tilt on broadband ocean bottom seismometers by rotation. The correction improves the ability of some instruments to observe spheroidal modes down to 0S4. We demonstrate this method using 15 broadband ocean bottom seismometers from the PI-LAB array. We measure normal mode peak frequency shifts and compare with 1-D reference mode frequencies and predictions from 3-D global models. Our measurements agree with the 3-D models for modes between 0S14 - 0S37 with small but significant differences. These differences likely reflect real Earth structure. This suggests incorporating ocean bottom normal mode measurements into global inversions will improve models of global seismic velocity structure. 
    more » « less
  3. Seismic attenuation maps deviant fluid and melt pathways from the subducted slab to the volcanic arc in the Lesser Antilles. 
    more » « less